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Abstract. This work is about the development of a
generalized dynamic model to account for both the
short-range and the long-range interactions in M,X Y-
type crystals in cubic environments. The short-range
vibrational interactions are handled using a mixed force
field, whereas the long-range interaction terms are worked
out by employing a revised version of the Ewald method.
In both cases, new criteria are introduced so as to get a
more realistic overall picture of the lattice dynamics for
these crystals. As for the short-range vibrational terms, a
criterion is included to minimize the cross terms in the
potential-energy distribution and in this way to include
the idea of a natural potential-energy distribution. The
Coulombic interaction terms are worked out and a new
convergence test is introduced to make sure that the series
expansion in both the direct and the reciprocal spaces
converge at the same speed and simultaneously, preserv-
ing the electroneutrality of the system. The current model
has been applied to Cs,UBrg; we have fitted the £ =0
vibrational frequencies as well as the generation of the
phonon dispersion curves for different polarization direc-
tions. As a result, the model is shown to have some utility
and flexibility to handle this kind of complex calculation
and could be generalized to more complex systems, such
as elpasolite-type crystals, to test the validity of the
approximations and constrains involved. We anticipate
that many questions are still open to discussion and the
need for more complete and accurate data is emphasized
throughout the course of the current research work.

Key words: Lattice dynamics — Dispersion and
phonon dispersion curves

1 Introduction

A general symmetry-adapted formalism is developed to
model and rationalize both the short-range and the long-
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range interaction terms in an M,XYs-type system in
cubic environments. A 15-particle model system is
introduced to simulate crystals belonging to the
Fm3m(02) space group. Our current model has been
worked out on the basis of a mixed Urey—Bradley force
field and a general modified valence force field (UBFF-
MGVFF) to describe the short-range interactions,
together with a refined version of the Ewald method,
used to account for the long-range interactions in the
crystal. A major point in this work is a new convergence
test to deal with the lattice sums, in both the direct and
the reciprocal spaces, and a new criterion (based on a
concept of natural potential-energy distribution, NPED)
is also introduced to optimize the short-range interac-
tions. Our current model avoids any supraparameter-
ization since we feel that this latter scheme obscures both
the physics and the chemistry of the problem we are
aiming to solve. This generalized model is able to
account for both short-range and long-range interaction
terms between atoms belonging to the same and different
unit cells. As a test of the current model, we have worked
out an application to the Cs,UBrg crystal, for which
there is a reasonable database of very carefully obtained
experimental data.

It is shown that the agreement between the theoretical
predictions and the experiment is fairly good and the
current model calculations are shown to have both some
utility and some flexibility.

This formalism may be generalized to deal with more
complicated systems, such as Cs,NalLnZg, elpasolite-
type systems (for which the beauty of the experimental
data is such that it deserves finer theoretical work). As
for the Cs,UBrg crystal, the dispersion of the 7, sym-
metry-adapted normal modes of vibrations and that of
the dispersion of the UBr2~ rotatory mode is reanalyzed
on the basis of the current model. The model developed
in the current research is compared with that of Torres
et al. [1], who applied the theory of lattice dynamics in
the harmonic approximation, using a rigid ion model
due to Born and Huang [2]. This model calculation was
applied to systems such as K,SnBrg, K,PtBrg, Cs,SnBrg
and Rb,SnBrg crystals in the cubic phase.
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Phonon frequencies and the normal modes of vi-
brations at the zone center were obtained and some
interesting conclusions were drawn from these calcu-
lations. Furthermore, many approximations were
employed to deal with both the short-range and the
long-range interaction terms, and these results provide
a rather low value for the libration frequency of all
the crystals studied. They also found that, within this
approximation employed, their calculated parameters
indicate that all these crystals are partially ionic. The
model of these authors is different from ours in many
respects, though we recognize that more theoretical
and experimental work is necessary to draw some
more solid conclusions. These authors suggested that
the calculated vibrational frequencies and the normal
modes of vibrations for the rotational 7,, mode may
be employed for future experimental and theoretical
studies in determining elastic, dielectric or piezoelectric
behavior as a function of structural phase transitions.
We would rather focus our attention upon the devel-
opment of both more general physical and generalized
calculation models for spectral intensities so as to
test the utility and flexibility of our current model
calculations.

Here, we used as an application the Cs,UBrg system,
which is highly symmetric and is classified as trans-
forming according to the symmetry operations of the
Fm3m(0;)-space group. The choice of this system to
illustrate both the advantages and the disadvantages of
the model to be introduced was influenced by several
factors:

1. The crystal structure is well known and highly
symmetric, corresponding to a cubic space group,
where the U*" ions occupy sites of essentially
octahedral symmetry.

2. For this crystal, a fairly accurate database has been
accumulated over the last 3 decades from both
absorption and emission studies.

3. The f? energy level scheme gives rise to extensive,
well-resolved absorption spectra spanning the region
from the IR to the UV.

4. The strongest peaks in these spectra at different
temperatures involve mainly I'y —» I', + v, (k=3, 4, 6)
type excitations, with the explicit cooperation of odd
parity normal modes of vibrations, with the exception
of a few lines which can be explained on the basis of a
magnetic dipole mechanism.

This system has thus provided extensive data to test
calculation models of the f-electron crystal field [3, 4], of
electronic [5] and vibronic spectral intensities [6], of
vibronic interactions [7] and of lattice dynamics [1, §, 9,
10, 11, 12, 13].

2 Model calculation and lattice dynamics

The dynamics equations for a general lattice may be
written in matrix notation as [1, 9, 11, 13, 14, 15]

D(%)E(l?) :E(%)Qz(lé) . (1)

Here, Q*(k)is a diagonal matrix, whose eigenvalues
are denoted as wf,k, and E(k) stands for the matrix of the
normalized eigenvectors e, (ui|pk). Some relevant math-
ematical properties_are as follows. The Fourier-trans-
formed matrix D(k), whose elements are labeled as
Dy,g ( i” E), is known as the dynamic matrix and from its
structl{re two properties of paramount importance are
derived: D(F)* = D(—) and D(¥)| = D(#).

As for the lattice dynamics of these types of lumi-
nescent materials, several studies with a variety of aims
can be found in the literature [1, 9, 11, 13, 16, 17, 18]. In
many of these studies, and owing to the complexity of
both the physics and the mathematics involved in lattice-
dynamics-type calculations, a parameterization criterion
concerning the minimization of the mean error deviation
among the observed and calculated vibrational eigen-
values was utilized. From the mathematical viewpoint an
accurate fitting may be obtained, using appropriate op-
timization computing programs; nevertheless all these
optimization procedures are most likely not to be able to
guarantee that a global minimum may be reached during
this optimization procedure.

It seems to us that some additional physical con-
straints should be included in these calculations and
therefore any optimization procedure must incorporate
these new criteria explicitly. The conclusions obtained,
therefore, should be regarded as determined by these
assumptions and constraints in the model calculation.
We have never had and most likely will never have en-
ough experimental data to perform an exact mathe-
matical fitting; thus, it seems advisable to look for simple
and flexible models to account for the obtained experi-
mental data. A fairly good example is afforded by the
normal coordinate analysis for a seven-atom system:
Here the number of degrees of freedom is 15 and the
number of unknown force constants is larger than the
experimental data obtained from spectroscopic studies
[19, 20, 21].

For this system, the normal modes of vibrations
transform in the octahedral molecular point group
as follows [11, 20]: Ty = oqg(vl) + Sg(VZ) + ‘E]u(V3) +
T1u(va) + 129(vs) + T2u(v6)-

Thus, the 7,,(2 X 2) symmetry species is 2 X 2, and
the associated potential-energy matrix involves three
unknown symmetry-adapted matrix elements, Fi3,
F34= F43, F44, which are themselves linear combinations
of force constants involving internal coordinates
(stretching and bending coordinates). For these systems,
the most common information is the six vibrational
frequencies v; (i=1, 2, 3, 4, 5, 6) associated with the XY62*
ion, uncoupled to the motions of the counterion Cs™
(Tlu + TZg)'

It is customary, in the literature, to solve the vibra-
tional equations of motion GFL =LA, excluding long-
range interactions contributions, and since LL'=G it
follows that L'FL=A. Here A is a diagonal matrix,
whose elements are denoted as 4, where 4 =

y(cm! . .
<ﬁ . In our current notation, these matrix ele-

ments may be written in an expanded form as follows:
2 =Yy 4 LiFie + > i) Ll i = 3,4 It s



standard to perform the normal coordinate analysis,
assuming that the off-diagonal terms, >, ;4 4) L FiiLii
are either negligible or zero (based upon the fact that it is
expected that the off-diagonal F-matrix elements should
be smaller when compared with the diagonal matrix
elements). This kind of argument is unfortunately rather
inaccurate since the L-matrix elements depend upon the
details of the force field (F) and also let us add on the
details of the optimization procedure chosen by different
authors. The main point is that for most systems of
spectroscopic interest, the experimental data available
are rather scarce or limited, so we feel that it is not
obvious that we should neglect these off-diagonal matrix
elements, unless our optimization software includes a
subroutine to minimize these cross terms (which may be
regarded as some kind of interference terms).

Our strategy to perform the normal coordinate
analysis for the 7,,(2 x 2) symmetry block is as follows:

1. We define k = (%) as a new fitting parameter to be
fitted so as to minimize the magnitude of the cross
terms for the potential-energy distribution. This &
parameter relates essentially (weak coupling among
the two 717, normal modes of vibrations) the frequen-
cies of the bending to the stretching vibrations and
the experimental evidence indicates that its value
should range between 0 and 1.

2. The best possible k values are chosen so that they obey
two criteria simultaneously: they produce sensible
values for the internal force constants and they
minimize the cross terms, producing a NPED. Thus,
to a first approximation, we could regard this
optimization criterion as a constraint upon the
solutions or the vibrational equation of motions for
the system.

As for the M>XYs-type systems, we have moved away
from the seven-atom system and have defined a model
(by no means unique!) made up of 15 atoms (Fig. 1).
This more general physical overall picture of the crystal
will allow us to include additional terms representing
interactions among neighboring atoms which belong to
different unit cells (interaction terms of the type M—-X
and M-Y) which, in principle, should provide a better
and more comprehensive description of the terms
involved in the dynamics matrix, as well as a better
understanding of both the phonon dispersion curves and
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Fig. 1. Nuclei equilibrium positions for the Cs,UBrg lattice
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the electron—phonon interaction. Chodos and Berg [13]
introduced for these types of crystals contributions due
to nearest- and next-nearest-neighbor intercell Y-Y
interactions in addition to M—M intercell interactions.
In preliminary works on this subject, Chodos and Satten
[9, 10] used seven parameters to fit a total of seven
vibrational frequencies and many improvements were
achieved in latter work by Chodos and Berg [13]. In
spite of all these efforts, many fundamental questions are
still open to discussion. We certainly recognize that a
calculation of the shape of the vibronic absorption
spectrum or a neutron scattering analysis of phonons
should advance the state of the art for the understanding
of these complex processes in solid-state physics. We
have initiated a program along these two lines to fill the
gap and to contribute new models and formalisms. A
substantial amount of work is in progress in our labo-
ratories with reference to elpasolite Cs,NaLnZg-type
systems. For further details, the reader is referred to
work already published [1, 12, 21, 22, 23, 24, 25].

For systems such as M,XY in the Fm3m(O;) space
group, the accepted nuclear equilibrium configuration
may be found in Refs [8, 11, 25, 26] and references
therein. The antifluorite structure is the same as that of
CaF, and with reference to our chosen application to
Cs,UBrg, the Ca’" cations are replaced by UBré’, and
F is substituted by Cs". Also V,=2r} is the volume
of the unit cell and ry is half the absolute value of the
reticular vector. For the CsUBrg system, we have
ro=0.555 nm’. Furthermore, a detailed discussion of the
first Brillion zone (BZ) of face-centered-cubic systems is
available in the literature and does not need to be
repeated here [14, 15, 27, 28].

Generally speaking, the short-range and the long-
range Coulombic contributions to the dynamical matrix
may be summed up by writing the crystal field potential,
V, as

V=¢> 4+ 0 . (2)
For the sake of completeness, in the coming sections

we give a brief discussion of these two contributions to
the total crystal field potential.

2.1 Modeling of the short-range interactions

The short-range interactions in the whole crystal
(Cs,UBrg), as will be shown, may be successfully
modeled using a general version of the modified UBFF
[11, 19, 26, 29, 30, 31]:

20 =RH Y (A’ +Kq > (Ar)?

Br—U—Br Cs—Cs
+F > (Ar)+ 2R F Y (An)
Br—Br Br—Br
+K DY (An) +2Rof" > (Ar)
U—-Br U-Br
+Kn Y (A3’ +2Rsf" ) (Ars) (3)
Cs—Br Cs—Br
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In this notation R;, R, and Rj stand for the nuclear
equilibrium bond distances for the nuclei ion pairs Br—
Br, U-Br and Cs-Br, respectively. K and H represent
the main U-Br stretching and Br-U-Br bending force
constants. Ky, Ky, and f” stand for interactions among
particles belonging to different unit cells, and the F has
been included to take into account linear interactions
among bromine atoms. We must emphasize that the
model used here is by no means unique and, of course,
we recognize that there are other interactions which
should be included in more sophisticated models for the
lattice dynamics of these systems. At this stage of the
discussion, we must take into account the experimental
data available, and on the basis of this information
choose a model calculation with a minimum set of pa-
rameters to be determined using a semiempirical calcu-
lation method. We also need to judge the quality of the
fitting and therefore we need to elaborate sophisticated
optimization computing programs so as to be able to
discern among the various possible local minimum ob-
tained in the point-to-point optimization procedures and
eventually to be able to reach a global minimum. This is
the strategy on top of the criterion, mean error deviation
minimization so as to avoid compensation of errors.
Thus, our approach in any calculation is to look for new
constraints and convergence tests in order to critically
test our model calculation against the experimental data.

2.2 Lattice sums and long-range
interaction contributions

The actual evaluation of the Coulombic contribution to
the total potential energy may be evaluated, taking into
account the crystal sums over both the direct and the
reciprocal spaces.

The previous statement should be handled with care.
In order to retain the electric neutrality of the crystal,
both summations must converge at the same speed and
time. One valid approach to tackle this problem is to use
a generalized Ewald calculation method. This formalism
assumes that when both positive and negative Gaussian
distributions are included in the model, the actual in-
teraction with the lattice produces two potentials, say ¢
and —¢°, so the Coulombic potential can be written as

¢ =%+ (¢° — 99) =% + 9" . (4)
Once this partition is adopted, the Coulombic con-

tribution to the dynamic matrix, that is

angue’ Cop <N];M):%: bup <]f/ ;,;) exp [I(E . 7NM)} ;
()

is expressed in terms of two series, one being defined in
the direct space, N, associated with ¢"', and the other
series defined in the reciprocal space, N, which is itself
related to ¢°.

In Eq. (5), ¢~ stands for the electric charge of the nth
particle in the /th unit cell, and o, =X, Y, Z, i.e. the
polarization directions along the Cartesian axis. Bearing
this in mind and after some algebraic manipulations,

Eq. (5) may be written in a more convenient form,
namely [7, 11]

k k k
e’c, = NS + NI
e\ N m \N M) TP\N M

il )

P
0
H
+Ncc/f(N P)] ) (6)
where
- T+k) . (THK
il ) e (0, (9),
AN M O o
0 0 f'—l—/_c”
X exXpR —iT ”<M> —7<N> — p
(7)
and also
- 62¢H( ? >
ml ko) __ () — Y M)
NM(N M) B %; exp[z(k r)} 0Or,0rg
0
. 8)
In our current notation, ¢ < N g M) is given by the
identity:
ul 7 121\ [
P <N M) = 2gnque’ (;) (; exp(—nr’?)dr’ .

I

%)

In this notation, 5 represents the width of the
Gaussian, which was set at 2 ;2 in previous studies
in this field [8, 10]. This is a point that should be
elaborated with care, since the choice of this width is
crucial with regards to the convergence of both series
and N". As we mentioned earlier in this section,
these two series should both converge at the same
speed and time, so as to preserve the charge neutrality
of the crystal (this is indeed the basic idea of the
forthcoming test for the convergence of these two
series). It lis important to observe that all the terms

gbfﬁ(]f] ]f/[) in Eq. (5) are independent of the wave

vector k, so the long-range interactions are responsible
for the dispersion between both the longitudinal and
the transverse t;, modes for £k — 0. With reference to
the convergence test developed in this work, we observe
that Eq. (4) holds only when the same number of
Gaussians are employed to evaluate the long-range
interactions in both ®°(NY) and ®"(NM) potentials.
Owing to the fact that both series are defined over
different spaces (the direct and the reciprocal spaces),
they do not converge at the same speed and time, and
it is necessary to make use of the relationship among



the vectors in both spaces and in this way obtain an
appropriate value for the Gaussian width that will
eventually produce the desired neutral overall charge in
the whole crystal. Our calculation methods and strategy
show that these two series converge approximately for
a total of 6(3n+ 1) reciprocal vectors and [(4n + 1)*—
4n(2n + 1)](4n+ 1) — 2n unit cells in the direct space.
In this notation, the Gaussian width is expressed as
0 kry 2. In the particular case of the Cs,UBrg crystal
the convergence of the two series is reached for
k = 1.40, which correspond to 32 vectors in the recip-
rocal space and 140 unit cells in the direct space.

3 Lattice sums: a convergence test

The convergence of the Coulombic contribution to the
total potential energy depends critically upon the choice
of the Gaussian width # [14]. In addition, the validity of
Eq. (4) is fulfilled when the same number of Gaussians
are employed to evaluate the long-range interactions in
both the direct and the reciprocal spaces. It is well
known that one of the main difficulties is that both series
do not converge at the same speed, thus producing a
charged density associated with the overall crystal. To
avoid this crucial and outstanding inconvenience it
seems sensible to employ a relationship among the
vectors in both spaces to obtain an appropriate value for
the Gaussian width that would produce a neutral charge
in the crystal.

In passing, recall that a vector in the reciprocal space
may be expressed in terms of the primitive translations
in tlle recigrocaLlattice, b; (i=1, 2, 3) as follows: 74 =
m(hby + kb, + 1b3), where the vectors 7y, are perpen-
dicular to the planes defined by the Miller indices (4, k, )
in the direct space. Furthermore, a constructive inter-
ference of rank m corresponds to interference between
the origin plane and the parallel mth plane belonging to
the family of planes labeled by the indices (4, k, /).

To a first approximation for a face-centered-cubic
lattice, when the first two families of planes having the
shortest distance among consecutive planes are taken
into account, a convergence test for the two series is
reached and any possible departure from the charge
neutrality is prevented. In the limit and within this first
approximation, the two series converge approximately
for a total of 6(3n+1) reciprocal vectors and
(4n+ D[(4n+1)> — 4n(2n+1)] — 2n unit cells in the direct
space. In this notation, the Gaussian width is given by
n = nry?. For the sake of completeness, we report the
families of planes, which were considered to develop the
convergence test as just described.

1. Family 1 {(h, k, 1) : (£1,£1,£1)}.
2. Family 2 {(h, k, ) : (£1, 0, 0), (0,£1, 0), (0, 0, % 1)}.

We performed the lattice dynamics calculation with
reference to Cs,UBrg for the many reasons previously
stated. For this lattice, the convergence test is reached
for n = 1.40, corresponding to 32 vectors in the recip-
rocal space and a total of about 140 unit cells in the
direct space.
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4 Application to the Cs,UBr¢ lattice
in the Fm3m(O;) space group

The vibrational frequencies of a crystal depend upon the
values of the wave vector, k, along different polarization
directions and this may be graphically represented in the
phonon dispersion curves for the lattice. Three of these
curves are classified as acoustic modes (the associated
curves approach zero when k£ — 0). All the other curves
are associated with optical modes, labeled as intermo-
lecular (lattice vibrations) and intramolecular (moiety
modes), and the zone center wave numbers of active
modes may be determined from IR and Raman spec-
troscopy. The dispersion relationships will enable us
to study, on an individual basis, the behavior of each
phonon along various directions of the wave vector,
classified according to the symmetry species of the
reciprocal space. The criteria upon which we worked out
the phonon dispersion curves are discussed in the
coming sections.

4.1 The symmetry of the first BZ

The solutions of the equations of motion for a crystal are
of the general form [11, 15, 27]

(10)

and give rise to a set of periodic wave functions, in both
space and time, which describe the vibrational state of a
crystal associated with a traveling wave having a
wavelength of (%) and propagating along the & direc-
tion. These traveling waves are classified using symmetry
arguments according to the wave vector. Furthermore,
the periodic functions are linearly independent and since
equivalent points in the reciprocal space correspond to
the same solution, the set of periodic wave functions can
be described completely within the first BZ. _

The group associated with a wave vector £ is defined
as a set of operations in the factor group (subgroup of
the corresponding space group), which leaves k invari-
ant. To determine the number of points in the first BZ
having the same energy, we must find the star associated
with &. This task may be achieved by performing all the
operations of the factor group on the wave vector. Thus,
in the first BZ, the number of functions, Ny, determined
by symmetry to have the same energy is given by

N; = (order of the star of k)

%’*“’N = AQ’N expli (E? — wt)

x (number of equivalent points to k) .

(11)

The symmetry information related to the first BZ in
the space group O; is discussed in Refs [11, 16, 25] and
will not be repeated for the sake of brevity.

4.2 Vibrational motions of the crystal: the A direction

The normal modes of vibration of a crystal may be
classified using symmetry arguments according to the
group of the wave vector k. For a given direction within
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the first BZ, the classification of the lattice normal
modes may be obtained from the direct product:
S¥ = Sc ® S, where S* represents the space of the
normal modes associated with the group of the wave
vector k, Sg corresponds to the space where the
polarization vectors are rotated and Sc is the space in
which the atoms are permuted within the unit cell by
including an offset factor.

To span the Sg space, a Cartesian basis set is utilized,
whereas to span the Sc space, we must work out the
trace of a matrix representation corresponding to a y
operator acting on the vibrational displacement of an

atom . As a result of this transformation, the atom

M
is displaced to a new position described by the notation

(V I/M>

. Thus, the trace is given by the identity,

— > of 1 1
XM(V) :%:5M$§MXCXP|:ZICV'V<M VM>:| ) (]2)
and
Tk=k+k, (13)

In Eq. (12), the offset factor associated with the
permutations is described by the exponential. In this
formalism, the next step is to classify the set of
equivalent atoms and to work out the traces corre-
sponding to each of these sets. The normal modes of
vibration of the crystal may then be classified in terms
of the various irreducible representations of the wave
vector. The symmetry coordinates of Cs,UBrg at k =0
may be obtained from Ref. [11] and/or upon request
from R.A.

For illustrative purposes, we have studied in detail the
A direction in the reciprocal space of the crystal, with
k = n(ko,0,0)r;" and koe(0,1). In the C,, molecular
point group, the traces corresponding to the ¥ operator
are such that in the subspace of the permutations,
we find Sc(U)ed;, Sc(Bri)e 241, Sc(Br®)ed, + B + E,
Sc(CS)8A1 + Bs.

Also, in the rotation subgroup Sk, we find
Sged((X)+ E(Y,Z). Thus, the direct product space,

[Sf = Sc ® Sg|, gives rise to the following irreducible
representations for the vibrational modes of the crystal
along the A direction:

SKU)ed (X) + E(Y,Z) | (14)

SE(Br)e24, (X) +2E(Y, Z) | (15)

SE(Br®)ed, (X) + 41(Y, Z) + B1(X) + B\(Y, Z)
+41(Y,Z) +By(Y,Z) + E(X) + 2E(Y,Z) . (16)

It is then straightforward, though long and tedious,
to find the set of symmetry coordinates expressed in the
basis set of the nuclear Cartesian displacement coordi-
nates (see Appendix). .

The advantage of this procedure is that the E(k)
matrix is unitary (see Eq. 1). The A direction is discussed
further in Sect. 5.2.

4.3 A generalized force field description
of the short-range interactions in the lattice

In Sect. 2.1, a modified UBFF (MUBFF) was intro-
duced, and is used to simulate the short-range interac-
tions among bonded and nonbonded atoms in the
crystal, using as a basis a complete set of internal
coordinates (stretching and bending coordinates).

From the geometry of the unit cell, the internal co-
ordinate may be expressed as linear combinations of the
corresponding nuclear Cartesian coordinates for each
atom in the system [8, 9, 10, 11, 32, 33, 34].

This is achieved by employing the transformation
matrix, f:

M2 M1/2R = RQ? . (17)

In this transformation, the matrix elements of the
diagonal M matrix correspond to the atomic masses of
the system of particles in the crystal. The matrix fy is
finite in dimension, since equivalent atoms located in
different unit cells may be included in the calculation
with an offset factor depending upon the wave vector.
Using the real, unitary matrix P, Eq. (17) may be
rewritten as follows:

PM2M/2P~1PR = (PR)Q | (18)

(19)

Next, it is convenient to introduce the fP matrix,
utilizing the transformation matrix

(PM*W) £ (PM*W)I(PR) — (PR)Q .

1= (PM—1/2) £ (PM‘W)/ (20)
and it is straightforward to show
fT(PR) = (PR)Q* . (21)

Besides, for a given nuclear equilibrium configuration
in the crystal, the internal coordinates are related to the
nuclear Cartesian coordinates of each particle, and the
symmetry coordinates of the system can be expressed
in terms of the internal coordinates by means of the
transformation s=BR and also S=Us=U(BR). This
latter identity relates the space of the symmetry coordi-
nates (S) to the space of the nuclear displacement
Cartesian coordinates (R).

Thus, in terms of the transformation matrix (UB), we
can rewrite Eq. (17) as follows:

GymFoymL = LQ? | (22)

where we have used the standard identities [11, 19, 20,
26, 30]

Gym = (UBM ' (UB)' , (23)
Fsym = (UB)/_le (UB)_I ) (24)
L = (UB) (M*‘/ZR) . (25)

The set of equations (Egs. 6, 23, 24, 25) represents the
symmetrized form of the vibrational equations of
motion for the system. Thus, the nontrivial solutions, for



an assumed force field (by no means unique), may be
obtained by solving the secular determinant

|GoymFsym — QE[ =0 . (26)

When this symmetry-adapted approach is used, it is a
lot easier (for k= 6) to deal with the internal modes of
the UBr;~ complex ion and also to modify the MUBFF
by including some extra-interactions of a GVFF type
(UBFF-MGVFF). The basis set put forward in this
research work includes both bonded and nonbonded
interaction terms. It can be shown that these coordinates
do not form a linearly independent set; nevertheless
when a modified general force field is employed, the
internal coordinate basis set does form both a complete
and orthonormal set of coordinates.

4.4 Modeling and fitting of the observed
vibrational wavenumbers

The relations among the GVFF and UBFF interactions
for the UBrZ~ complex ion, may be deduced from the
comparison of Eq. (3) with the expression for the
GVFF.

2 =" K(An)i+ Y Hy(RA0);

i=1—6 j=1-12
+ Y 2B (Ar) (M),

J(lk)=1-12
+ Z 2F55(Ar2), (R2A0) ) (27)

p=1-6:7(p)=1-4

It is straightforward to show that the following
identities hold:
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K., =K+ 2F +2F

H,=H+1(F-F)

B =L(F 2 F) 28)
FN%(HF/)

The stability condition is worked out from the fact
that the first derivative of the potential energy with re-
spect to the equilibrium nuclear Cartesian displacement
coordinates should vanish identically, and the global
minimum as for the potential energy is reached when the
condition given in Eq. (29) is fulfilled:

[ H4F =0 (29)

This condition provides the exclusion of the linear
terms of the potential-energy representation, which can
then be written in matrix notation as follows:

2V =s§'fs . (30)

Here s is the matrix of the internal coordinates and f
is the potential-energy matrix, expressed in terms of in-
teractions among these internal coordinates of the sys-
tem. Furthermore, the set of internal coordinates may be
expressed in terms of the Cartesian nuclear displacement
coordinates, so we arrive to the identity: 2V=R’f,R,
where f,=B’fB. Then, the f, matrix is expressed in
terms of the Cartesian nuclear displacement coordinates
of the system. We can go a step further and prove the
identity (UB)™' = M’I(UB)'G;yin. By combining the
previous set of equations; we can obtain the matrix
elements associated with Fyy, as linear combinations of
interactions of UBFF-type. The symmetrized G and F
matrix elements are listed in Table 1.

The presence of the Cs atoms in our model leads to
the inclusion of interactions among adjacent unit cells
and when only the closest neighbors are considered,

Table 1. The symmetrized Gy,

and F,,,, matrices for the Ggym matrix elements

C52UBI'6 lattices Gl,l = G2’2 = G3‘3 = 0.01251 G4’4 = G()vé = Gg_g = 0.02092
G4.5 = G6,7 = Ggﬁg = -0.01680 G4’|9 = Gé.zo = G&,Zl = 0.00485
G5.5 = G7’7 = Ggyg = 0.05864 G5’19 = G7.20 = G9,21 = -0.00970
Gio,i0 = Giii1 = Gia,i2 = 0.05006 G313 = Giga = Gysys = 0.02503

Gisi6 = G17.17 = Gigas = Gasps = Gasoe = Gaza7 = 1.00000

Gio19 = Gao20 = Ga121 = 0.00531

Fgym matrix elements
d1g Symmetry

G22,22 = G23,23 = G24$24 = 0.00752

Fiy = K +4f" + 4F + f/ + 0.3711843, + 0.00714¢pqu — 0.03935gm:gcs

& symmetry

Fiy =K +4f" + F + 3F + F + 0.10362¢3,+ 0.00714gp,qu + 0.00393575:4c

Tig Symmetry

Fiy = 0.0125(2f" + 2K + f7) — 0.00102¢3,—0.00010g5:gu + 0.00111gp.qcs

Ty, Symmetry

Fiy =H+ f'+ K+ 0.5(F + F' + f) — 26— 0.03323¢3, — 0.00402g5,qy + 0.04438¢p:qcs

TO
), Symmetry

Fii = K +0.05283f" + 4f" + 2(F + F')— ! +0.12590¢3 + 0.00714gpqu — 0.03935gm:gcs

Foy = H+0.22777f" + [ + K + 0.5F — L5F' + 26+ 0.03147¢3, — 0.00402gp,qu + 0.04438g5:gc,
Fi3 = 0.4384f" + 12(2f" + K)+ 0.41451gp:q¢ + 0.06705quqcs

Fia = 0.10970f" + 2F, + F + F' + 0.06295¢3,

Fis = 0.15220f" — 6.92284f" + 0.06815g5:4cs

Pz = 0.31601f" + 3.46409(f" + Ky ) — 2.82843151 + 0.15374¢p:qcs

Fyy = 0.04077"
Ty Symmetry

Fiy = H — 21, + 025" + 0.5(f" + K + F — F') + 0.02429¢3 — 0.00201¢p,q + 0.02235¢5:qcs
Fyy = 4Ky + 8f" + 4Ky + 0.13817gprqc,+0.05012¢2, + 0.02235quqcs
Fia = —V2(f" — Ku) + 2.30939%; + 0.10179¢p,qcs
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the number of Cs atoms to be included in the calcu-
lation amounts to 342 in total. However, when the
temporal offset of the interactions involving the Cs
atoms is worked out (including Cs—Cs, Cs—U and Cs—
Br interactions), it is then possible to write the fy
matrix in terms of the interactions among the nine
different kind of atoms, namely U: 1, Br: 2-7 and Cs:
8, 9. The additional GVFF type interactions and force
constants included in the MUBFF employed in this
study are

1. The stretch—bend interaction in UBr6 , Fry
2. The linear stretch-stretch interaction in UBri~, f .
3. The bend—bend interaction of the type UBr6 —Cs+

Tb1-
4. The cis bend-bend interactions of UBr6 , b,
5. The coplanar bend-bend interactions of UBr6 , 1.

The potential-energy stability becomes

RU—Br(f/ + 4F/) +RCS_Br(4bf”) + (aaqi ) 0, (31)
1

where a=X (i=2, 4), Y (i=3, 5), Z (i=6, 7). This

approximation implies that the total resulting force on

the bromide particles vanishes identically. In the present

study, we set b=0.

The secular determinant can be partitioned in sub-
determinants of smaller dimensions. For the 1 X1
symmetry blocks, the evaluation of the Fy, matrix
elements is straightforward at the nuclear equilibrium
configuration. For both the 7,4 x4) and the
T24(2 x 2) symmetry blocks the complexity of the
problem increases substantially and in order to obtain
the most appropriate and representative description of
the force field for the physical model assumed for the
crystal we need to include some additional physical
constrains upon the various possible approximate so-
lutions. We have discussed (Sect. 2) the concept of
NPED in detail, and so need not repeat the discussion
here. It is also necessary to add that a further criterion
utilized to optimize the fitting consisted of the mini-
mization of those short-range interaction force con-
stants which are expected (from both knowledge and
experience in normal coordinate analysis for poly-
atomic systems) to be either small or negligible. This
criterion was utilized to estimate the value of the f”
force constant, which describes linear interaction terms
[11]." These terms are small, but not zero, and their
evaluation is very sensitive to the approximations in-
volved in the model. Our experience indicates that a
fairly good approach to this problem is to look for a
global minimum for the overall potential energy with
respect to a reaction coordinate.

! Fortran programs using a 15-atom-system model and a general-
ized force field (mixed UBFF-GVFF) to describe the short-range
interactions for the M>X Y, systems can be obtained upon request
from R.A

5 Results of the calculations and discussion

5.1 The T point [k = (0,0,0)]

A factor group analysis [11, 26, 29, 35], for the Cs,UBrg
lattice gives the following projections into the octahedral
molecular point group:

I (translation: UBrg ) &1y,
I'(rotation: UBrg ) &1y,
(32)
['(Cs)etay + Tiu,

I (vibrational: UBr; Yeaig + &g + 2T + T2g + Tous
(
I'(acoustic)ety, ,

Thus, the Raman and IR active modes (i.e. for a zero
temporal offset among unit cells) give rise to
Iyib(k = 0) =o14(Raman) + ¢,(Raman) + 714 + 371, (IR)
+2155(Raman) + 73,(—). The inclusion of both the
short-range and the long-range interactions for Cs,UBrg
produces a fit as good as could be expected from this
model calculation. It is worth mentioning that our
strategy is to develop sensible physical models with a
number of independent constraints so as to advance the
state of the art in solid-state physics. Our calculation was
not meant to fit the observed and the calculated vibra-
tional wave numbers exactly; we would prefer to keep a
simple model with a few parameters to be fitted from
available experimental data. In Table 2, we list for this
system the observed and calculated vibrational fre-
quencies for k =0 and as the reader will notice the
database has been updated, with new data provided
kindly to us by P.A. Tanner. The magnitudes of the set
of 13 force constants and the atomic charges on each
particle are compared with previous results available

Table 2. ¥ = 0, observed and calculated vibrational wave numbers
of CSQUBT(,

Wave number Symmetry FSirn

(em™) coordinate
assignment
Vobslc1 Veal
197 197 aqg:Sl F]] = 182.61
(166)° 152 £4:54 F, = 108.72
(56)° 53 20513 Fi; = 6.609
no 19 T :Slﬁ -
195 195 710:5, Fiy = 102,01
84 84 S7 F22 = 10.57
51 51 Sz() F33 = 44.58
OC OC 525 F12 =0
F13 = —-6.8
F23 = 6.0
F44 = 0.0
87 87 ‘L'zg:Sm F]l = 8.90
43 43 S22 F22 = 1447
F12 = 0.0
(212)° 203 t10:8s
’7° 94 S;
no 67 Sz()
no 0° S25
“Ref. [10]

®Data provided by P.A. Tanner
¢ Acoustic mode



(using different approximations and another physical
model) in the literature for this system [10] in Table 3.
The values are generally similar, but with some re-
markable exceptions. Our model predicts a reduction of
the U-Br stretching force constant, the magnitude of K
being only 63% of that obtained using a seven-param-
eter model [10] Simple UBFF and MUBFF calculatlons
for UBrg~ give a value for K of about 90 Nm™2, and the
magnitude is expected to decrease with the 1nclu51on of
further interactions in the model. Labonville et al. [19]
pointed out that a decrease in K corresponds to a less
stable anion structure, correlating with an increase in the
repulsion constant, F. The force constant F” is smaller in
magnitude than the value determined by Chodos and
Satten [10] and of opposite sign to the convention where
it is equated to —0.10F [19]. The UBr;  bending inter-
action parameters, which were introduced in this model,
turn out to be of minor importance. Also, the trans
strech-strech parameter is approxnnately midway be-
tween the values calculated for the UBr;~ m01ety alone,
using the GVFF and the MUBFF. The UBr;~ stretch-
bend interaction constant, F,,, has a more significant
value than that calculated from the single ion force field
alone.

It is interesting that the model predicts a much lower
wave number for the 7, rotational mode than the seven-
parameter model [10]. The latter model calculates the
rotational mode of the Cs,MnF¢ lattice to be at
150 cm™"; this unexpected value can be rationalized on
the basis that the inclusion of additional short-range
interactions among adjacent unit cells would reduce it.
For K,;ReClg [12], the calculated magnitude of the ro-
tational mode was also much higher than the experi-
mental value of about 26 cm™'. The mode is sensitive to
the halogen mass, so the wave number for Cs,UBrg is
indeed expected to be lower.

The k=0 wave numbers of UBr;  may also be
deduced from the vibronic spectra of the anion, when

Table 3. Calculated force constants and atomic charge for
Cs,UBrg. The magnitude of ¢gcs was constrained at 1.0. Also
2qcstqut 64, =0

Force constant Magnitude (Nm™)

This study Ref. [9]
64.23 102
22.15 18
—4.55 -5

0.35 -1

4.04 5.2
-1.35

0.0 -

0.43 -
-12.25 -
14.60 -
o1 0.28 -
t> 0.65 -
ty —-0.32 -
Particle Magnitude (e™")
¢Br —-0.5644 —-0.525
qU (1.3864) (1.15)
4Cs (1.0) (1.0)

=]
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diluted into transparent host lattices. Many transitions
have been studied in the electronic absorption [4] and
emission [36] spectra and the wave numbers of the 7y,
modes Se and S; (from vibronic origins), the o4,(S;) and
T24(S10) modes (from progressions) are similar to those
in Table 2. The effects of dispersion and coupling of
modes to the host lattices are evidently apparent at
x=0.05 in Cs,Zr;_ U,Brg since the 7,,(S;3) mode ex-
hibits multlple structure, with the strongest feature near
60-64 cm™ . Besides, two very weak bands near 160 and
166 cm™" are observed in the vibronic sidebands and
these are attributed to the zone boundary modes derived
from Sy(e,) (see Sect. 5.3). This suggests that the ob-
served wave numbers for S4;, which was extrdpolated
(Eq. 8) from the Raman spectrum of Cs,UClg, is about
10 cm ™! too low. The transverse optic—longitudinal optic
(LO) splitting of the 7, modes is not, however, apparent
in the spectra of the dilute crystals.

When the effective charges on the particles are al-
lowed to vary in the fitting procedure, their variations do
not produce major changes in the optimized wave
numbers; however, small changes in the short-range in-
teraction force constants may produce a rather incon-
sistent set of atomic charges on the particles in the
crystal. This theoretical evidence should lead us to ex-
ploit new models and also to employ more sophisticated
software to perform the optimization procedure. This
optimization procedure should be carried out point to
point for a given nuclear configuration and we would
also need to make substantial improvement to the vib-
ronic line shapes and the hyper-potential-energy surfaces
of the terminal electronic states.

More theoretical work is needed and new models
should be made available. A family of systems we are
working on is the elpasolite type, for which a substantial
number of highly accurate and careful measurements is
available from different research groups.

5.2 The A direction: [k = n(k,0,0)r; '] with ko, (0, 1)
For this direction of the reciprocal lattice, the dynamical
matrix may be partitioned using C4, symmetry. The
normal modes transform according to the following
irreducible representations: I'(vib : A)eboy + 2, + oo+
2ﬂ2 + 88.

The symmetrized short-range interaction force con-
stants are tabulated in the Appendix and the long-range
interactions for each symmetry species were evaluated
for 0 <ko<1. The calculated frequencies for the various
symmetry species along the A direction and for kg, &0, 1)
are displayed in Table 4.

The most interesting results in this table are the rel-
ative large dispersions along the A direction of some of
the phonons derived from the 7,,I') LO modes. The
dispersion is relatlvely small for the UBr2™ 1, stretch,
but is about 10 cm™! for the 7;, bend. The t,, vibronic
sidebands of the electronic spectra of Cs,UBrg exhibit
broad triangular-shaped features between 85 and
90 cm™' and between 197 and 217 cm™!, peaking at
87 cm™! and 211 cm™', respectively, which may there-
fore be assigned to the 7;, LO modes.
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5.3 Phonon dispersion curves for the Cs,UBrg lattice

To obtain the phonon dispersion curves, we followed the
same procedure as for the A direction (Sect. 5.2). In the
space spanned by the wave vector k. The descent of
symmetry was handled using the compatibility tables
given in the Appendix. The resultant phonon dispersion
curves are given in Fig. 2.

The inclusion of extra interaction terms in the dy-
namical matrix D(k) produces a modification of the
dispersion of the 7;, modes with respect to the previous
calculation [10]. This modification has been assumed to
be derived from interactions among neighboring atoms
corresponding to different unit cells in the lattice (U—Cs-
and Br—Cs-type interactions). At some zone borders
parity changes are observed. This is the case for the
T24(I') mode at X5 and X5 (X).

Additionally, modes of the same symmetry repel each
other, this behavior being particular evident for the A
and the X directions. For the 15, and the 75, modes, it is
seen that a quasi-accidental degeneracy at the borders of
the zones W (W, and W5,") is observed, and this may be a
consequence of the use of a mixed GVFF-UBFF to
describe the vibrational behavior of the lattice.

[ro0] . [ffo]  [fi0]  _[100] [¢:0]

(c00] [130] [120]

[¢0]

6 Conclusions

The model employed in this work to fit the k=0
vibrational modes of the Cs,UBrg crystal and the
strategy used to produce the phonon dispersion curves
for different polarization directions may be compared
with the work reported by Chodos and coworkers [§, 9,
10, 13] and by other workers [35, 36, 37, 38, 39]; the
major difference being that the force field has been
symmetrized. Besides, our model is extended to include a
total of 15 atoms, and therefore additional interaction
terms and contributions have been incorporated, using a
mixed UBFF-GVFF. Furthermore, several additional
optimization criteria have been utilized in the fitting
procedure. The terms not included in our current model
represent interactions between Br particles belonging to
different UBr;~ species. The inclusion of these interac-
tions would require a major modification in our model
calculation, by incorporating the 12 closer neighboring
cells into our reference unit cell.

The model has been extremely successful to repro-
duce (with a minimum set of fitting parameters) the ex-
perimental k& =0 vibrational wave numbers, and
provides a better estimate of the 7,, rotational wave
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Table 4. Calculated vibration-

al frequencies in the A direction Symmetry Wave numbers corresponding to kg

0.1 0.2 0.4 0.6 0.8 0.95

Ay 197.0 197.0 196.9 196.7 196.3 195.8

152.1 152.2 152.9 153.8 154.9 155.7

202.7 202.8 202.8 202.4 202.6 202.7

94.1 94.4 95.8 98.4 101.7 104.1

67.2 67.2 67.0 65.8 63.4 61.0

3.5 6.9 13.2 18.9 24.0 27.6

Ay 152.0 151.9 151.5 151.2 151.0 150.8

53.1 53.3 54.0 54.7 55.1 55.1

Ay 20.4 20.4 20.4 20.4 20.4 20.4

A 87.1 87.2 87.9 88.7 89.4 89.7

43.0 42.9 42.7 422 41.8 41.7

As 20.5 20.8 21.7 23.3 25.6 27.9

53.0 53.0 53.1 53.4 53.9 54.4

87.0 86.8 86.3 85.3 84.1 83.1

43.1 434 44.6 46.0 47.1 47.6

195.0 195.0 194.9 194.8 194.8 194.8

83.8 83.4 81.8 80.1 78.8 78.1

50.9 50.6 49.2 46.9 44.1 41.8

2.8 5.6 11.1 16.2 20.8 23.6

number. In view of the improvement, this method can be Ay symmetry

generalized to perform lattice dynamic calculations for S1=x1,

more complex systems, such as elpasolite-type crystals. Sh=a(x;+ x4).

A substantial amount of work in this direction is in Sz=a(x; — X4).
progress in our laboratory. The choice of these systems S4:a§(x3+x5+x6+x7)~
has been influenced owing to the wealth of new and Ss=a(ys = ys = 26 27).

updated experimental data from both linear and non- Se=alxs+x).

linear optics. Throughout the course of the present A1 Symmetry

work, we introduced several additional constraints upon ?;f (2x37+ X3 7+x(, f_x7)),
both the short-range and the long-range interactions, so 8= a0 —yshas =20
as to make the model more realistic, though we recog- A‘/Ssy_mgletry .
nize that there are still many questions open for dis- v=a(z — 25 = Yot yo)
cussion as well as some obscure points which need some AZ’SSmieztry .
clarification based upon solid calculations employing an Si?;;?xgzi ;92)5 ~Jetya),
accurate and reliable database. Finally, we strongly be-

lieve that elpasolite-type systems should be more con-
clusive to determine the utility and validity of these

As symmetry
0 components
Siz=a(y2+ya),

model calculations than other systems in this complex Siz=a(y3+ys),
but fascinating field of research. Sia=a(ye+ y7),
Sis=a(ys = yo),
Acknowledgements. The authors express their gratitude to Fond- S16=1,
ecty for grant 1981207 to R.A.E.C. acknowledges both the S17=a(z2 — za),
Universidad de Chile and Fondecty, bodies which supported his Sig= a(xs — x7),
studies to complete MSc and DSc degrees at the Facultad de Sio=a(yg+yo).
Ciencias Fisicas y Matematicas of the Universidad de Chile. R. & components
Tabensky is gratefully acknowledged for many highly illuminating Sao=a(z2+24),
suggestions for improvement of this work. So1 = a(ze + 27),
Sn=a(z3+zs),
Appendix Sy =a(zs — zo),
S2a=1z1,
The symmetry coordinates in the Cy, molecular point Sa5=a(y> — ya),

So6=—a(x3 — Xs),

roup are as follows:
group Sy7=a(zg + z9),

Where a = /3

The symmetrized F-matrix elements of the A direction
are
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g 8H + 2K — 2f! — 16F,, + 166> + 22 — 16F" o AV2[A(f" — Kin) — 2t1] cos (ko)
my ’ ' \/MBrMCs ’
81" 4 4K, 2K (1
\/EK 1= 4Froc) Fin = (f 4K + 2Ky +cos(k07r)]> .
Fip = ; ' mcs
/mumey - Ag symmetry:
4H — 4F,, + 8t + 1t — 6F . <4f”(1 —A4?) +4A2Km+2H+F+F’+f’>
Fu— 1212 = )
"o mUmBr ’ mgr
8t F+F +2F,
Fig = ﬁlcos Fiass = ( “> ’
Vmume: )
4t2 —2F'
424" + D*Kin) + K+ 2(F + F') — f! Fiou4 =
Fy = ; MBr
mpr
A2 1 -1 3)
\/§F+F’+2Fm) — V2(20 = 2F + H — Fy + 28 |
) : v Mmumer
- <4 2A2f/l +D2K >> . 4f// A2 —|—4A2Km +[t7—1
0 mBrmCs , 11 mBrmCs ’
P (4(2A2f//—|—D2Km)+K+2(F+F’)+fr’> " _ 2f”—|—4D2K —I—K+2(F+F’) f/
M, ’ 13,13 Mg, )
NF — F' F + F' +2F,
Fs = <\/_( >> ; Fi314 = ( 1) )
mpr
o (WA ALK £ 2 S S F=3F 40\ g \/§(K+fr’—4Fw)
44 = . ) ' N 7
84%f" + 4D’Ky, ) cos (ko%)
4\/§[A2K + 171 — A2 —’b—‘}coskﬂ F —(( 2) )
Fa m+f ( ) G ( 02) , 13,19 \/MBMmcs
\/MBcMc
o o (4f’(1—A2)+4A2Km+2H+F—F’+f’)
4(2421" + DKep) + K + 3F + F' + f! e mp; ’
Fss = - )
T
2v2 (2 = 2F' + H — Fr + 1)
P 81" + 4Ky + 2Ky [1 — cos(kom)] Fiate = — va(2 " Ve
66— mcs ’ 7 v/ Mumae ’
— A, symmetry:
// _ 2 24 T
o (A1) + 48K + 2 F+F — f — 4 Fiaso— 4f ) + 447K + J’-‘] cos (ko)
77 = o , ’ V/mumg; 7
fo [ +AD K + K+ F +3F + f) Fisis— 8f”+41< +4K)
88 = p— : ' mcs ’
— A} symmetry: BA(f" + Kom) — &%
(1 _ 42 2 / F - _ 6 7
F99 _ <4f (1 A ) + 4A Km +f> ) 15,17 < /mBrmCs )
mpr
Al .
AS symmetry: [4142(/‘ " — Km) — 8’7‘%‘} cos (ko)

Fio,10=
mpy

(4f”(1 —AZ)—|—4A2Km+4H+2(F—F')—f'—8ll> Fists = Vmemcs 7



8H + 2K — 2f! — 16F,,
Fie16 =

— 166 +ngf 16F'
my ’

8
Fig19 = — _LCOS (kog)
' \/mumcs

4f"(1—A%) +44°K +2H +F — F'+ ' — 41,
Fip17= s )
T
<2H +F—F —411)
Fi718 = ,
mpr
47" (1 =A%) +44°Kn +2H +F —F' + ' — 41,
Fig 18 = . )
T

8f" + 4K,
Fio 19 = <f7>

mcs

The compatibility relations are as follows:

Alg AZg Eg Tlg T2g Alu AZM Eu Tl u T2u

A1 AZ AlAZ AI,AS AZ,AS Al’ AZ, AI,AZ, AIAS AZAS
A] Al A3 A2A3 A1A3 AZ A] A3 A1A3 A2A3
21 24 2124 222324 212223 22 23 2223 212324 21 2224

Xtoxox XD XS XX Xy X XS
A A A A A N A A A A
774 7o 7o Zs Zs  Z1Za
SiSi S S 5SS S, S S, SiS

LT L L Ly Ly Ly
Al As Ay As Al As
0 0> 010> o 0> 010>
W, W, Wy Wy W,

Z, Z> Z> Z, 7374
0O 0> 0O 0> 0.0
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